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is equal to 
2~ l~= ~w~ W~, . (11) 

r 

where the W axis coincides with the normal of the 'best' 
plane. Since U~+ V~+ 2_ Wr --R~ is constant for every orien- 
tation of the Cartesian system, the relation 

I + A = E  Y. w,R 2 (12) 
r 

is valid, where I denotes the inertial tensor and E the unit 
matrix. From (12) it can easily be shown that I and A are 
diagonalized by the same transformation, thus we have the 
analogous relation for the eigenvalues 

2~r + 2~= Y.wrR 2 , i=  1, 2, 3.  (13) 
r 

With respect to the procedure described in this paper we 
first note that equation (4) is equivalent to searching for 
the maximum possible moment of inertia about the normal 
o f  the plane. Thus the normal of the 'best' plane is a prin- 
cipal inertial axis with moment (eigenvalue of the inertial- 
tensor matrix I) 

27 ax = Z w~( U~ + V~). (14) 

However, in the first instance we do not look for this 
eigenvalue but rather for the corresponding eigenvector, 
the principal axis of I. Then the eigenvalue 2~ aX (and hence 
) . ~ )  can easily be calculated from equations (3) and (14). 
(The other two eigenvectors - and eigenvalaes - are not 
determined since they are not relevant.) Thus both ap- 

proaches give the same result. In principle, the solution 
described here is of a simpler type; in practice, the diffe- 
rences in computation do not matter when using electronic 
computers. 

Note added in proof: - The program has also been found 
useful for constructing crystal drawings when used in the 
following way: The plane of projection has to be defined 
by three points. The weights of these points must be non- 
zero, whereas the weights of all other points (atoms) in 
the unit cell are set to zero. Then the positions of the atoms 
are given in the final output with in-plane coordinates U 
and V, and W coordinates normal to the plane. Since the 
plane of projection is defined by three points in the unit 
cell, it may not be a lattice plane. In this regard the pro- 
gram is different from that described by Minor & Dyson 
(1970); see also Buerger (1965). 

I am indebted to the Deutsche Forschungsgemeinschaft 
for financial support. 
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This note presents a least-squares method for fitting the phase probability distributions obtained in protein 
crystallography by the function P(a) = exp (K+ A cos a + B sin a + C cos 2a + D sin 2a). The method has been 
tested with data from crystals of lamprey hemoglobin. 

An alternative, and algebraically simplified, representation 
for the phase probability distributions used in protein 
crystallography has recently been described (Hendrickson 
& Lattman, 1970). It adds generality to the treatment of 
various types of phase information, affords computational 
advantages over the conventional functional forms and 
simplifies the combination of phase information from inde- 
pendent sources. It proved to be a convenient and useful 
aid in the structure analysis of lamprey hemoglobin (Hen- 
drickson & Love, 1971). Unfortunately, the new represen- 
tation required a reformulation of the error model for the 
isomorphous replacement method. This revision has been 
validated by experiment, but it nonetheless renders the 
new representation incommensurate with the formulations 
from other error models. Thus, unless computations are 
begun de novo, the advantages of the simplified form are 
lost to the structure analyses of the many proteins for which 
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phase probability distributions have been computed by 
other error models. The analysis of such structures might 
benefit if one could, cast the distributions at hand in the 
alternative representation. In particular, this would facili- 
tate the inclusion of additional phase information, such as 
from a partial structure or direct methods, in the refinement 
of atomic models. The close similarity of phase probability 
curves computed by the usual isomorphous replacement 
error models with those calculated by the new procedure 
(Hendrickson & Lattman, 1970) suggests that a good fit 
by the simplified representation should be possible. 

The problem, then, is to find the values of the parameters 
in the simplified representation, 

Pc(~) = exp (K+A cos ~ + B  sin ~+ C cos 2~+D sin 2~), (1) 

which provide a best fit to an arbitrary 'observed' phase 
probability distribution, Po(~). A least-squares minimi- 
zation of the direct discrepancy between Pc(~) and Po(~) 
leads to a set of non-linear normal equations which must 
be solved by iteration. However, logarithms of the probabi- 
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Table 1. Measures of  the fit of  the simplified representation to 300 Blow-Crick phase probability distributions from 
lamprey hemoglobin 

Relative Discrepancy in Discrepancy in 
residual figures-of-merit centroid phases 

~'~ IPc(~)- Po(~)ld~ 
Weighting function c / u  

ImC- mOl IOCCB -- OC° B[ 
and statistic e 2rt 

50 Po(~)d~ 

w(e) = 1 
Average 0.123 0.0135 1.40 ° 
Worst value 1.01 0.168 28.2 

w(~) = Po(e) 
Average 0.036 0.0012 0.09 
Worst value 0.25 0.015 5.3 

W(~) = Po2(e)  
Average 0-031 0-0096 0.66 
Worst value 0-35 0.301 22.9 

lity functions can be used instead to effect a simple solution. 
Thereby the function to be minimized is 

E = w(e) [InP¢(e) - In Po(e)] 2 de (2) 
0 

where weighting is provided by w(e). While the use of 
logarithms fails to guarantee a 'best' fit to Po(e), proper 
weighting can assure an entirely adequate fit as demonstra- 
ted experimentally below. Since both Pc(a) and Po(e) are 
of exponential form, their logarithms are given directly by 
the exponents. The minimum of E is found by the usual 
condition that partial derivatives of E with respect to each 
of the parameters must simultaneously vanish. The result- 
ing normal equations are given in matrix form as 

M - p = d .  (3) 

The elements of the normal matrix, M, are 

2re W(e)CtCJ de 
m~j = o 

and vector d has elements 

di= w(e)ci In Po(e) de 
0 

where the c~ are defined by c = [1, cos e, sin e, cos 2e, sin 2e]. 
The desired vector of parameters, p = [K, A, B, C, D], can 
easily be found by inversion of (3) once the weighting 
function w(e) has been defined. If (2) is left unweighted, 
i.e. w(e)= 1, only diagonal elements of the normal matrix 
are non-zero and the solution is particularly simple: 

1 f 2re 
In Po(e) de ,  P l = K = ~  o 

1 12re 
pi = - -  ci in Po(e) de ,  i=  2, 3, 4, 5 .  (4) 

7t 0 

It is somewhat difficult to ascertain the proper least- 
squares weights, w(e). In principle the appropriate weights 
are given by 

1 Pod(e) 
w(e)= ~r-2[in-Po(~)] = aZ[po(e) ] . (5) 

However, the evaluation of a(Po) is complicated and no 
useful, general simplifications are readily apparent. Special 
cases where a(P o) is approximately proportional to Po and 
others where it is more nearly constant suggest weights of 

w(e) = 1 or w(e)= Po2(e). Alternatively, on an intuitive basis, 
it seems that since it is the peaks of the probability distri- 
butions which are crucial for phase determination, w(e) 
= Po(e) might be an effective weighting function. 

The above procedures for evaluating parameters for the 
alternative representation of phase probability distributions 
have been tested with data from 300 of the reflections used 
in the structure analysis of lamprey hemoglobin (Hen- 
drickson & Love, 1971). 'Observed' phase probability 
distributions, Po(e), were computed by the method of 
Blow & Crick (1959) using data from three isomorphous 
derivatives. These distributions were fitted with both 
weighted and unweighted equations. The integrals were 
evaluated numerically with a 5 ° interval. Some measures of 
the goodness of these fits are presented in Table 1. Al- 
though the fit by the unweighted equations (4) was satis- 
factory for nearly all of the distributions, if the ratio of 
peak to valley probability exceeded 1010 quite poor fits 
sometimes occurred. In the case of weighting by P2(e), 
nearly all fits were satisfactory but some were not  and 
minor maxima tended to be over-emphasized. However, 
when Po(e) was used as a weighting function, all of the 
distributions were fit very well. 

It should be noted that for centrosymmetric reflections 
exact parameters can be obtained from the best phase, em 
and the figure-of-merit, m, by inversion of equations (22) 
of Hendrickson & Lattman (1970). Thus, 

and 
A = cos an tanh- lm 

B = s i n  an t anh- im (6) 

for pure real or pure imaginary structure factors. 

Discussions with Drs Jerome Karle and Eaton Lattman 
contributed to this work and are greatly appreciated. 
Discussion of the theoretical basis for weighting was sug- 
gested by a referee. 
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